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The theory of pulsed field gradient (pfg) NMR applied to mol-
ecules in cellular systems which contain different subcellular com-
partments separated by permeable membranes, acting as diffusion
barriers, has been extended. A numerical model of restricted dif-
fusion and magnetization relaxation behavior in pfg-CPMG NMR
experiments, based on the Fick’s second law of diffusion, is pre-
sented. This model is applicable to a wide range of systems and
allows the exploration of temporal and spatial behavior of the
magnetization with and without the influence of gradient pulses.
Results of the numerical experiments show their correspondence
to the previously observed ones and demonstrate the importance
of the inclusion of the time domain data in analyzing diffusion
measurements. © 1998 Academic Press
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ments. A number of theoretical models have been presented
interpret the diffusion and relaxation time measurements i
such systems. Among these models three main branches can
identified: simulation models, analytical models based on th
scattering wave-vector formalism, and analytical models base
on the evaluation of Fick’'s second law of diffusion.

In simulation models{-9) the position and spin orientation
for every molecule in a system are numerically calculated fo
each time step. Since a random displacement vector represe
ing the result of the collisions of the molecule with its sur-
roundings and its phase shift caused by diffusion during the
time step (which should be sufficiently small) is known, it is
possible to follow all spin transformations in the given time

modeling; Fick’s second law of diffusion. and space regions in detail. This procedure is repeated fc

every molecule in the system. Various geometry configura
tions, types of molecular interactions, and shapes of magnet
zation pulses can be explored in this way. However, to ge
Pulsed field gradient (pfg) NMR methods are very Weﬁat.isfactory statis.tical accuracy, thousands qf molecular traje
suited to the study of relaxation and diffusion behavior of fluidQfi€s must be simulated, which may require hours or eve
in porous and biological media. In recent years pfg NMR h&lays of calculatlons.on powerful workstatlgns. T.hIS gpproach
gained considerable attention by several grodps( This is neye_rtheless, was |mplgmented for the !nve§tlga}t|on of th
caused by technical improvements of the (active shieldegl'd'ty_ of the short-gradient-pulse approximation in a planar
gradient sets, which allow for much more accurate pfg NMR): cylindrical and spherical geometrg)( _
measurements, and by new theoretical developments started Hyccording to the scattering wave-vector formalism, the pfg
Karger and Heink 4) and later Cory and Garrowap)and ©cho amplitude represents a Fqurlgr transform _of the displace
Callaghan ). Another factor contributing to the increase ofe€Mnt propagatoP(x|x’, At), which is the conditional proba-
pfg NMR studies and development of theories was the availlity that a spin starting at positiox will be found at position
ability of proper model systems, e.g., polystyrene spheses (X after_the time intervalt. This approach has been introduced
When applied to biological systems containing differerty Steiskal and Tanned () and was later adapted by several
subcellular compartments and cell-to-cell transfer, interprefd¥thors ¢, 11-13. However, the diffusion propagator can be
tion of the pfg measurements becomes very complicatd@und only for a limited set of initial and boundary conditions
Membranes can restrict diffusion but allow exchange arid the so-called narrow-gradient-pulse approximation. There
transport between the compartments which can have totdffe: in most cases only one compartment is investigated (fc
different relaxation behavior. This causes the observed res@&mple, 1, 11), sometimes with the introduction of outside
to be dependent on microstructure, membrane permeabilifjfiuencing compartments, which, however, need to be invisi
diffusion, and relaxation behavior in the different comparf€ for NMR (12). Also some efforts have been made to avoid
limitations caused by the narrow-gradient-pulse approximatiol
1To whom correspondence should be addressed. Fa&-317-482725. (13, 14, 1§. Multi-compartment interconnected systems are
E-mail: henk.vanas@water.mf.wau.nl. far too complex to be described in the framework of the giver

1. INTRODUCTION
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approach. It is also hardly possible to extract relaxation effects Output boundaries
of the diffusion system by propagator imaging. / /Mei‘bra“es\\\A
The third branch of models, and probably the most promis-
ing, is based on the evaluation of Fick’s second law of diffu-
sion (17). For a given geometry this is a partial differential
equation with respect to the local spin magnetization, which
can be solved either analytically or numerically. This equation poDITiLL ... D} TiLi; -
was used for the exploration of, relaxation processes
(2, 18, 19 and the influence of magnetic field gradient pulses FIG. 1. Schematic presentation of a system consisting of compartment
on diffusing particlesZ, 11, 13. Differential equation models separated by permeable planar membranes.
allow for the investigation of a variety of systems with com-
licated configurations by changing the boundary conditions, . L .
gr inserting fSnctions, p?loperlygdegscribing the s);1ape of th Thg local spin magnet|z.at|c$(.x, D m_such asystem can be
magnetic field, etc. However, analytical solutions of the partige[esc,”bed by the follgwmg differential equation based on
differential equation can only be found for a certain combiné:—ICk s second law of diffusion1(7):
tion of initial and boundary conditions, and become difficult in
common situations. Probably the best way out of this problem o ad 9 1 _
is to solve this differential equation numericallg, 0. This S =3 {D(X) ax S t)} BRTE%) S(x, 1), [1]
way could be very fruitful from a practical point of view since
gyggsgcsa;rfglgggi :(thljjlfszxupilcolglja wide range of dlﬁcererr]{{ere D(x) gnd T(X) represent the diffusion coefficient a}nd
In this paper we present further development of the nrglaxatmn tlme,' respectlvely, as fun'ctlon's of space coordinate
. . . N "W our case diffusion and relaxation time remain constan
merical solution of Fick’s second law of diffusion for multi- .. - . . :
o . : W|fth|n a particular compartment, but may differ for different
compartment systems, which is applicable to a wide range Of - rtments
systems and allows us to explore the temporal behavior o? P )

S ; : X . The influence of limited membrane permeability can be
magnetization with and without influence ofgradlentpulseFaken into account by posing proper boundary conditions
This is particularly important in view of recent develop-

ments of multiple spin echo pfg NMR pulse sequenc@( which for the left and right membranes of tjta compartment

i At re written
which let one measure the magnetization decay versus fhe tten as
echo time {.) and gradient strength3) simultaneously. The

Dy, Tn,LnsPn

design of the model roughly corresponds to the developed _ a§(-1, 1)
: ; : ; Pj—l[S(lj—l, ) — Sfl(lj—lv ] = D(lj—l)iy
experimental setup and can easily be adopted to investigate X
the influence of different instrumental distortions and inter- sl t
nal field gradients on the detected signal and to explore p[S 10,9 — S0, 0] = D(,) SG, ),
more complicated geometries of the compartments (nonpla- IX
nar barriers). b=0, =l 4+L, j=1,....n, 2]

In addition, we present some numerical results to show their
correspondence to results obtained by other models and to

demonstrate the importance of the time domain in diffusiofneeS (X, 1) = S(x, 1), x € [l 7 1], j =1,...,n, and
measurements. n equals the total number of compartments. For the outpu

boundaries we have

2. THEORY
Solo, 1) = Fo(t);  Sqealln, 1) = Fy(), [3]
We are investigating the behavior of magnetization in a
one-dimensional system (Fig. 1), consisting of a set Qfhere F (1) and F,(t) describe the behavior of the outer

compartments, separated by planar barriers. Each compgilignetization. Magnetization at time 0 (initial condition) takes
ment is characterized by the decay tiffig diffusion coef- o "form

ficient D;, and length of the compartmeht, surrounded by

the membranes with the permeability paramegers andp;.

It was assumed that the width of the membranes is much S(%, to) = (%), [4]
smaller than the length of the compartments. The output

boundaries are also characterized by the permeability valwelseref(x) determines the initial distribution of the magneti-
po andp,,. zation.



524 NOVIKOV, VAN DUSSCHOTEN, AND VAN AS

of the transformation results in the following equation in finite

differences:
t S(X, t) — S(X;, te
”Af ) [D(%)(S(% . t) ~ S(x. 1)
— D(X-2)(S(x;, t) — S(Xi-1, t))
FIG. 2. Sequence of magnetic field gradient pulses. + D(X)(S(Xi+1, teey) — S(X;, te—q)) — D(X;_1)
X (S(%;, te1) = S(Xi-1, t-1))]/ 24X

In pfg NMR experiments, the amount and phase of the 1
magnetization are influenced by the sequence of magnetic field + ( V=1yg(t) x; — T(x)) S(Xi, t), [7]
gradient pulses. The partial differential equation [1] for the '
magnetization, including magnetic field gradients, takes t

form (19, 20 l1%k|ng into account boundary conditions [2] and [3], we have

D(x;) = Dy, X € (Ij_1; I));
D(lj-1) = pj—1Ax;  D(lj) = pjAx;

? 9 9
— S(x, t) ={D(x) — S(X, t)}
at X dIX Tox) =T, x el j=1,...,n

1 = ; =
N < \/ilyg(t)x B T(X)> S(x, 1), [5] S(X_1, t) = Fo(t);  S(Xme1, t) = Fa(to). [8]

Such an interpretation of boundary conditions leads to the
_ o _ _ representation of each membrane as an additional compartme
whereg(t) is the magnetic field gradient function ands the of |ength Ax with the diffusion coefficientpAx, similar to

gyromagnetic ratio. In our calculations the functig(t) is earlier reportsZ, 20). After some transformations Eq. [6] takes
represented by a pair of magnetic field gradient pulses @k form

duration  separated by, as shown in Fig. 2. These pulses

have identical amplitud&, but opposite polarity. —S(%;, ) = aD(X)S(X 11, 1)
The numerical solution of the partial differential equa-

tion is based on the transformation of Eq. [5] to an equa-

tion in finite differences. There are two different methods

of transformation, according to either the implicit or

—{1+mouo+omln

the Crank—Nicholson schem23). Both schemes are stable _ ( ’/leg(tk) X — 1 )At}

for arbitrary values of the time step. Following the im- v bOT(x)

plicit scheme, the partial differential equation takes the X S(%;, t) + aD(%_1)S(X_ 1, t) [9]
form i i- i1 k),

wherea = At/Ax?. The last expression is in fact a sequenc
S(x. t) — S(x,, o) of tridiagonal Iin_ear sets of equations which should l:_:e
At = [D(X)(S(Xi+1, t) — S(Xi, 1) solyed for each time steR, _k =1,... ,_when the magneti-

zation from the previous time stetp_, is already known.
— D(%_1)(S(x;, t) — S(X_y, t)))/AX? Calculations start with the initial condition at time 0. The
tridiagonal equation can be solved by the Gauss eliminatio

1 method, adopted for tridiagonal set83], which provides

+ (\'qvg(tk)xi - ) S(Xi, t), high d d of ina. Anal
T(x) igh accuracy and speed of processing. Analogous sets
linear algebraic equations can be derived for the Crank-
k=1,...; i=0,...,m, [6] Nicholson scheme (Eq. [7]).

The Crank—Nicholson scheme is assumed to be second-ord
accurate in time, whereas the implicit scheme is only first-orde
whereS(x;, tg) = f(X); Xo = lg, Xy = |,y mis the number (24). Our calculations, however, showed that in all cases
of space steps, andlx and At represent the space and timavhich will be introduced below, the results of these methods
discretization steps respectively. The Crank—Nicholson schemere hardly distinguishable, while the Crank—Nicholson algo-
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rithm is approximately 30% slower than the implicit one. The 01
developed computer program contains both opportunities as an
option.

When the strength of the gradient pulse is high, the phase
difference between adjacent positions can be very large, and in
that case it is impossible to get sufficient accuracy with rea-
sonable values for the time and space steps. If this is the case
it is worthwhile to solve a linear set, assuming that there is no -4
influence of the gradient pulse,

72
=
=S (X, t1) = aD(X)S* (X1, t) -6 | //
7 ms
1 Y — 67
— {1 + a(D(x) + D(X-1) + 70,7 At} . s
(%) N | — — 187 ms
X S (X, 1) + aD(X_1)S* (%1, t), [10] ¥
I
!
and then make the correction for the influence of the gradient  -10 ‘ L : I
pulse, multiplying the solution by the factor, characterizing the 0 110" 210" 310" 410"
influence of the gradient pulse: A
(¥8G)Y, m’
S(xi, t) = S (X, t)exp \r/jlyg(tk) X,) [11] FIG. 3. Spin—echo attenuation plot for three valuesof7, 67, and 187
1 1 / (P

ms. One compartment: length, iBn; diffusion coefficient, 2< 10~° m?/s; the
boundaries are fully reflective (total calculation time is about 18 s on an Indy

However, even in this case, in order to get good accuracysiécon Graphics WorkStation).

sufficiently large number of time and space steps are required.

This problem can be solved by modeling the gradient pulses

with a time and space step much smaller than the time atiépolation of this model into the second and third space
space step in the time regions without gradient pulses, whidiinensions are under consideration at the moment.

results in higher accuracy without increasing the calculation The implemented algorithm is fairly fast: for obtaining one

time too much. value of the magnetization amplitude and phase (time regio
without gradient pulses), by the implicit method one need:
3 SOFTWARE IMPLEMENTATION only three complex operations of summation and multiplica-

tion and, of course, some preliminary actions, which, however

The numerical model was implemented using the progral‘ﬁg not take much time. _So calculation of the whole time—spaci
ming language € + as a DLL module, which can be used fosurface (typically 256 time steps and 225 space steps) tak:
a wide variety of different external software systems. On tP0ut 0.75 s on an Indy Silicon Graphics WorkStation. This
input it requires a structure, containing parameters which dact gives us QQOd hope to use thl; model for the deve!opmer
termine the number of compartments, diffusion coefficien‘?,f a f!tt!ng routine for the gstlmatlon of the set of variables,
decay time, length and membrane permeability for each coRSCribing compartments in terms of lengths and membrar
partment, characteristics of the gradient pulses, numberQﬁrme_""b'“t'eS' and in qdd|t|0n diffusion coefficients and relax-
steps in the time and space domains, and method of modeliAen times from experimental pfg-CPMG systems.

On the output it yields the arrays of the magnetization ampli-

tude and phase as it develops in time and space for a given 4. RESULTS AND DISCUSSION

value of the pulse field gradient amplitude. Input structure can

be easily reprogrammed to encompass the different number oWe performed many calculations with the numerical model in
compartments, membrane permeabilities, characteristics of tnder to find a correspondence with results reported previously
gradient pulses, etc. We started with a one-compartment system with the geometr

One of the advantages of the described model is its flexiose to the geometry described i), The length of the com-
bility. It can be adopted for the modeling of other gradiergartment was set to 1om, the diffusion coefficient was equal to
pulse sequences, exploration of the influence of internal mayyx 10 ° m%s, and the boundaries were assumed to be fully
netic field gradients, and more complicated geometry of theflective. The spin—echo attenuation plots for three values of
compartments (nonplanar barriers). The problems of the €X; 67, and 187 ms) are shown in Fig. 3. These plots were obtaine
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85 Fl permeable membranes for four values of the gradient fiels

strength is shown. One can clearly observe that the relativ
amplitude near the membranes builds up due to restricte
diffusion and that the phase of the magnetization is affected b
the permeability of the membranes. This change of the phase
caused by an imbalance of the spins moving to the right or left
which results in a flow-like phase buildup. Note that the net
phase over the whole system is zero.

The next numerical experiment demonstrates the importanc
of the time domain in the NMR experiments. Two systems of
the same length (3x 107> m), consisting of two closed
compartments (fully reflective walls), were modeled. System:
differ in the diffusion coefficients (for the first compartment,
2 X 10 %and 4.5x 10 *°m?s; for the second, X 10 *°and
0 \ : 0.6 1.37 X 10~ ° m?%s) and lengths of compartments (for the first

0 50 100 150 compartment, 2 10° and 5x 10~ ® m; for the second, K
10~° and 2.5x 10~° m). Relaxation times for each compart-
ment were equal in both systems (for the first compartment, 1

FIG. 4. Spatial distribution of magnetization magnitude and phase for twand for the second, 0.5 s). In Fig. 6 we present attenuation plo
time instances, 120 ms (squares) and 160 ms (circles), and two valuef@f these systems, and in Fig. 7 we present relaxation of th
membrane permeability, 10~ m/s (empty points) and & 10 *mis (filed  maqnetization in time for three gradient pulse strength value
points). gon;part‘ments hav_e the same values for the diffusion coefflmee, — 0. 0658 andlL4l T/m. In the system with the fuIIy
2.5X 10 ° m?/s; time relaxation constant, 10 s; and lengthu®0. Parameters . ! T . .
of the magnetic field gradient pulses &Be= 14.1mT/m, 5 = 10 ms,A = Teflective walls, when the magnetic field gradient is absen
0.11 s (total calculation time is abod s on anindy Silicon Graphics (G = 0), one can observe onli, relaxation (Fig. 7 (1)). In
WorkStation). this case magnetization from the second system (dashed line

the Fig. 7) is relaxing faster, because the contribution from th
by integration over all space steps for different valueSaind longest compartment (2.8 10 ° m) with the shortest relax-
using an echo time directly after the gradient pulses-(1 ms). ation time (0.5 s) in total relaxation is higher for this system.
We obtained numerous dips, the abscissa of which correspondgéioen increasing the gradient pulse strength, the diffusior
the width of the compartment. The first minimum, which is showprocess becomes more pronounced, and@o+ 1.41 T/m
in the figure, is observed at6G = 2m/L. This result is in full (Fig. 7 (3)) the total relaxation of the second system become
accordance with results obtained i) slower than that of the first one, since in the first system the

Several calculations were performed in order to find accdongest compartment has the greatest diffusion coefficien
dance with the numerical model reported 20X, A two- Such different behavior is noticeable only at longer echo times
compartment system with a semi-permeable membrane amdi it is practically impossible to discriminate between the twc
open output boundaries was modeled. Each compartment Bgstems, judging only by the spin—echo attenuation plot (Fig
the same value for the diffusion coefficient (2510 ° m%s), 6), measured with a signal-to-noise ratio of 1000 immediately
relaxation time constant (10 s), and length (g86n). The after the second gradient pulse (random noise added to spir
parameters of the magnetic field gradient pulses w&re= echo attenuation plot was generated by a special softwal
14.1 mT/m, 8 = 10 ms,A = 0.11 s. In Fig. 4 the spatial generator in order to simulate the influence of experimentally
distribution of the magnetization magnitude and phase immaetected statistical distortions). This problem may be relevar
diately after the second gradient pulse (squares) and 40 ms l&berfitting procedures, where the time domain becomes al
(rounds) for two values of permeability (2 10~% m/s, empty extremely important source of information for diffusion and
points; 1x 10~ ° m/s, filled points) is presented. The observestructural properties of the explored substance.
result corresponds to the data, given2@)( for the same set of
parameters. The important improvement of our model is pre- 5. CONCLUSION
sented in the same figure, where the time development of the
magnitude and phase of the magnetization at each space podrurther development of the numerical model of restrictec
tion is shown. One can observe the further decrease of @iéusion and magnetization relaxation behavior in pulsed fielc
amplitude and dispersion of the phase in time. A more corgradient pfg-CPMG NMR experiments was presented. The
plicated case is shown in the Fig. 5, where the time develomodel allows for easy changes in the number of compartment:
ment of the magnetization magnitude and phase for a fowempartment size, diffusion and intrinsic relaxation times in
compartment system with open boundaries and sentlte compartments, membrane permeabilities, etc. A number ¢
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FIG. 6. Spin—echo attenuation plot for two systems (signal-to-noise ratio
1000). (a) One-compartmeri = 2 X 10 °m%s, T=1s,L =2 X 10°°
m; two-compartmentD = 5 X 1071°m?%s, T=05sL =1 X 10 °m
(solid line). (b) One-compartmer = 4.5 X 107 1°m%s, T=1s;L =5 X
10 % m; two-compartmentd = 1.37 X 107 °m%s; T = 0.5 s;L = 2.5 X
10~ ° m (dashed line). (Total calculation time is about 14 s on an Indy Silicon
Graphics WorkStation.)

numerical experiments were performed, which prove the cor
rectness of the implemented model and correspondence to t
previously obtained results. At the same time the presente
model significantly expands the range of explored configura
tions, allowing us to forecast the behavior of a system usin
different spin—echo sequences, study the influence of instrt
mental distortions, and look into the development of the mag
netization in the time.

The latter is very important from an experimental point of
view. As we have shown, the time domain contains valuable
information which is now accessible by experimet)( Two
domain data sets (echo time and gradient strength) obtained
the experiment have to be fitted then in terms of membran
permeabilities, length of compartments, diffusion coefficients
and relaxation times. This model is a good starting point for the
development of such fitting procedures based on a globse
approach. This possibility is supported by the very good spee
properties of the implemented software. The information abou
the membrane permeabilities and length of compartments, «

1.41 T/m (3); 1.845 T/m (4) = 1 ms,A = 7 ms. Echo time: 8 ms (a); 40 ms
(b); 80 ms (c) (total calculation time is altodis on anindy Silicon Graphics
WorkStation). Compartment parameters:IA= 1 X 10°°m?s;T = 0.5 s.

FIG. 5. Time development of magnetization magnitude and phase foBaD = 0.5 X 107 °m%s;T = 0.5s C:D = 0.5 X 10 °m?s;T = 0.5 s.
four-compartment system with open boundaries and semi-permeable m&mb = 0.5 X 1072 m%s; T = 0.1 s. Permeabilities: between A and Bx1

branes for four values of gradient field strengéh= 0 T/m (1); 0.705 T/m (2);

10" ° m/s; between B and C, X 10 “ m/s; between C and D, 2 10" ° m/s.
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FIG. 7. Time development of magnetization for two systems (see captiolrlll'
for Fig. 6) for three values of gradient field strengB= 0 T/m (1); 0.658 T/m  15.
(2); 1.41 T/m (3) (total calculation time is abb@ s on anindy Silicon
Graphics WorkStation). 16

well as diffusion coefficients, and relaxation times which cah'”
be extracted by a fitting procedure, could be very important f%
further development of the pfg NMR technique. '
The presented numerical model can be further extendedto
simulate two-dimensional diffusion (manuscript in preparation).
Preliminary work has been done in this way, indicating that it did™
not introduce any principal obstacles. First test calculations with a
model consisting of concentric cylinders resulted in an increaseif
calculation time of a factor of about five. These results indicate th
feasibility to build more adequate models describing a variety o$'

biological objects and porous networks. 3
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